

Task Title: Use Roofing Estimator

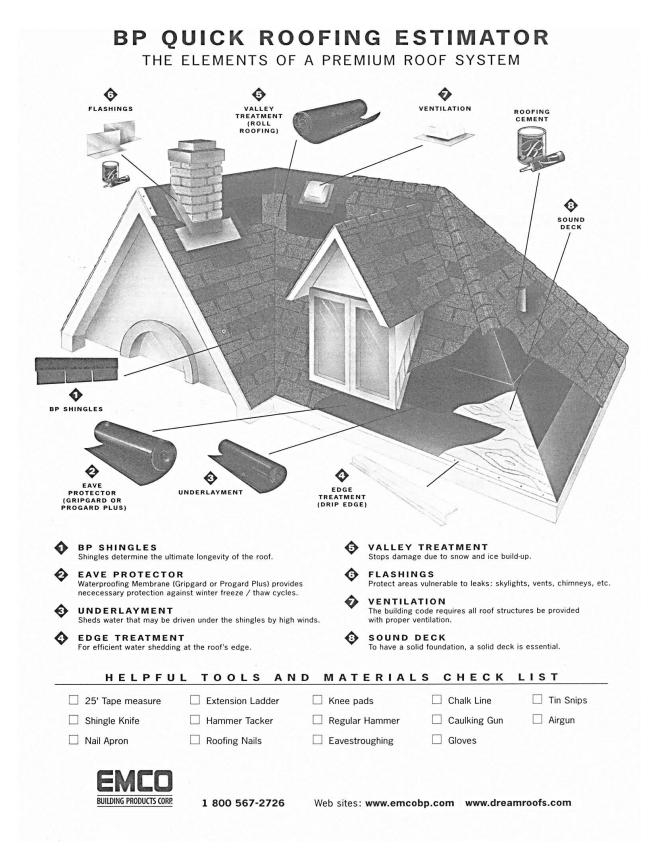
OALCF Cover Sheet – Practitioner Copy

Learner Name:		
Date Started:		
Date Completed:		
Successful Completion	: Yes No	
Goal Path:	Employment	Apprenticeship
Secondary School	Post Secondary	Independence

Task Description:

Use a roofing estimator to find information to calculate the amount of roofing supplies to order.

Main Competency/Task Group/Level Indicator:


- Find and Use Information/Interpret documents/A2.3
- Use and Understand Numbers/Use measures/C3.3

Materials Required:

- Pen & Paper and/or digital device
- Calculator (optional)

Learner Information

A Roofing Estimator can be used to calculate the amount of roofing supplies to order. Scan the BP Quick Roofing Estimator.

Task Title: Use Roofing Estimator_A_A2.3_C3.3

	TECTUR							ATENT	ALS ES		n on	a Delotra	Sec. 1	C.	OST	EST	- 1111-	10
CLIPSE	COVE	RAGE (S	Q. FT.) / E	lundle:	25	<u>.</u>	EA	VE PROT	ECTOR					no. c	f rolls x c	ost per rol		s
EVEREST FIBERGLASS 33.3						HIP ROOF: Add (2 x A) + (2 x B) = sq. ft. + area of roll = no. of rolls required. GABLE ROOF: (2 x A) + area of roll = no. of rolls required. Eave protection should be laid a minimum of 12" beyond the inside of the						3						
HARMONY FIBERGLASS 33.3				-			exterior w	all line.										
UROPA					32.3	_	1	IP EDGE							of pce x co	ost per pce		\$
ROOFMASTER 32.3 MIRAGE 32.3			_	HIP ROOF: Add (2 x A) + (2 x B) and divide by length of drip edge for total number of lengths required. GABLE ROOF: Add (2 x A) + (4 x B) and divide by length of drip edge for total number of lengths required.														
									arip eage									
		P. C.					UN	DERLAY	MENT					no. o	f rolls x co	ost per rol		-
3	-TAB SI	HING	LES	enter la					ootage of you uare footage u							or por ron		\$
RADITION	COVE	RAGE (SC	2. FT.) / B	undle:	32.3	_	Divid	le by area of	funderlaymer									
UKON FIBERG	GLASS	1			32.3	_	VE					_			of pce x co	st per pce		\$
AMPART					32.3	_	on ro	oof slopes gr	ventilation is reater than 4: tion (¹ /150 for	12 to be s	plit eve	nly betwe	en root	ventila	tion			•
AKOTA FIBER	GLASS				32.3	_	FLA	SHINGS			-				f pce x co	et oar poe		
ITADEL					32.3		Vinyl arour	or metal (g	alvanized stee s, vents, soil s	el, sheet o tacks, etc	opper) :	shall be ir	nstalled	110. 0	n poe x co	st per pce		\$
VEATHER-TITE	6				32.3		ROO	OFING C	EMENT									
OTE: Valleys may	v require addit ALCULA Add	TION [(A + (aterial. I C) ÷ 2]	x E =		- t. ÷ n			⁺ = no. of		r each	side.	RIAL CO		f bdl. x co	st per bdl		\$
HOTE: Valleys may	ALCULA ALCULA Add 0.5 x	ional ma TION [(A + (B x D	aterial. 	x E = ft. ÷ i	= sq. f no. sc	- t. ÷ n ı. ft./I	odl.*	= no. of	⁺ = no. of bdl. for ea	ach end	r each 1.		RIAL C					
TITE-LOK HOTE: Valleys may SHINGLE C HIP ROOF: GABLE ROOF:	ALCULA Add 0.5 x : A x I	ional ma TION [(A + (B x D	aterial. () ÷ 2] = sq. ft. ÷ 1	x E = ft. ÷ i	= sq. f no. sc	- t. ÷ n ı. ft./I	odl.*				r each 1.		RIAL C			st per bdl		
GABLE ROOF: GABLE ROOF: Gable ROOF:	ALCULA Add 0.5 × : A x I for e arter strip,	ional matrix TION [(A + 0) $(B \times D)$ (A + 0) (A + 0)	nterial. C) ÷ 2] = sq. ft. ÷ 1 de. idges	l x E = ft. ÷ i no. sc	= sq. f no. sc q. ft./t waste	- t. ÷ n ı. ft./l odl.* :	odl.* = no.	= no. of		ach end	r each 1.			no. c				
GHINGLE C SHINGLE C SABLE ROOF: GABLE ROOF: To allow for sta o Hip roof type	ALCULA Add 0.5 x : A x 1 for e arter strip, e, and 10%	(A + 0) (A + 0)	aterial. (C) ÷ 2) = sq. ft. ÷ 1 de. ridges able r	l x E = ft. ÷ i no. sc	= sq. f no. sc q. ft./t waste	- t. ÷ n ı. ft./l odl.* :	odl.* = no.	= no. of		ach end	r each 1.							
OTE: Valleys may HINGLE C IP ROOF: ABLE ROOF: D allow for sta D Hip roof type	ALCULA Add 0.5 x : A x 1 for e arter strip, e, and 10%	(A + 0) (A + 0)	aterial. (C) ÷ 2) = sq. ft. ÷ 1 de. ridges able r	l x E = ft. ÷ i no. sc	= sq. f no. sc q. ft./t waste	- t. ÷ n ı. ft./l odl.* :	odl.* = no.	= no. of		ach end	r each 1.			no. c				
OTE: Valleys may HINGLE C IP ROOF: ABLE ROOF: D allow for sta D Hip roof type	ALCULA Add 0.5 x : A x 1 for e arter strip, e, and 10%	(A + 0) (A + 0)	aterial. (C) ÷ 2) = sq. ft. ÷ 1 de. ridges able r	l x E = ft. ÷ i no. sc	= sq. f no. sc q. ft./t waste	- t. ÷ n ı. ft./l odl.* :	odl.* = no.	= no. of		HIP STY	r each 1.			no. c		ABLE S		
OTE: Valleys may HINGLE C IP ROOF: ABLE ROOF: D allow for sta D Hip roof type	ALCULA Add 0.5 x : A x 1 for e arter strip, e, and 10%	(A + 0) (A + 0)	aterial. (C) ÷ 2) = sq. ft. ÷ 1 de. ridges able r	l x E = ft. ÷ i no. sc	= sq. f no. sc q. ft./t waste	- t. ÷ n ı. ft./l odl.* :	odl.* = no.	= no. of		HIP STY	r each 1.			no. c		ABLE S		
OTE: Valleys may HINGLE C IP ROOF: ABLE ROOF: D allow for sta D Hip roof type	ALCULA Add 0.5 x : A x 1 for e arter strip, e, and 10%	(A + 0) (A + 0)	aterial. (C) ÷ 2) = sq. ft. ÷ 1 de. ridges able r	l x E = ft. ÷ i no. sc	= sq. f no. sc q. ft./t waste	- t. ÷ n ı. ft./l odl.* :	odl.* = no.	= no. of		HIP STY	r each 1.			no. c		ABLE S		
OTE: Valleys may HINGLE C IP ROOF: ABLE ROOF: D allow for sta D Hip roof type	ALCULA Add 0.5 x : A x 1 for e arter strip, e, and 10%	(A + 0) (A + 0)	aterial. (C) ÷ 2) = sq. ft. ÷ 1 de. ridges able r	l x E = ft. ÷ i no. sc	= sq. f no. sc q. ft./t waste	- t. ÷ n ı. ft./l odl.* :	odl.* = no.	= no. of		HIP STY	r each 1.			no. c		ABLE S		
OTE: Valleys may HINGLE C IP ROOF: ABLE ROOF: D allow for sta D Hip roof type	ALCULA Add 0.5 x : A x 1 for e arter strip, e, and 10%	(A + 0) (A + 0)	aterial. (C) ÷ 2) = sq. ft. ÷ 1 de. ridges able r	l x E = ft. ÷ i no. sc	= sq. f no. sc q. ft./t waste	- t. ÷ n ı. ft./l odl.* :	odl.* = no.	= no. of		HIP STY	r each 1.			no. c		ABLE S		
OTE: Valleys may HINGLE C IP ROOF: ABLE ROOF: D allow for sta D Hip roof type	ALCULA Add 0.5 x : A x 1 for e arter strip, e, and 10%	(A + 0) (A + 0)	aterial. (C) ÷ 2) = sq. ft. ÷ 1 de. ridges able r	l x E = ft. ÷ i no. sc	= sq. f no. sc q. ft./t waste	- t. ÷ n ı. ft./l odl.* :	odl.* = no.	= no. of		HIP STY	r each 1.			no. c		ABLE S		
OTE: Valleys may HINGLE C IP ROOF: ABLE ROOF: D allow for sta D Hip roof type	ALCULA Add 0.5 x : A x 1 for e arter strip, e, and 10%	(A + 0) (A + 0)	aterial. (C) ÷ 2) = sq. ft. ÷ 1 de. ridges able r	l x E = ft. ÷ i no. sc	= sq. f no. sc q. ft./t waste	- t. ÷ n ı. ft./l odl.* :	odl.* = no.	= no. of		HIP STY	r each 1.			no. c		ABLE S		
OTE: Valleys may HINGLE C IP ROOF: ABLE ROOF: O allow for sta o Hip roof type	ALCULA Add 0.5 x : A x 1 for e arter strip, e, and 10%	(A + 0) (A + 0)	aterial. (C) ÷ 2) = sq. ft. ÷ 1 de. ridges able r	l x E = ft. ÷ i no. sc	= sq. f no. sc q. ft./t waste	- t. ÷ n ı. ft./l odl.* :	odl.* = no.	= no. of		HIP STY	r each 1.					ABLE S		
OTE: Valleys may HINGLE C IP ROOF: ABLE ROOF: D allow for sta D Hip roof type	ALCULA Add 0.5 x : A x 1 for e arter strip, e, and 10%	(A + 0) (A + 0)	aterial. (C) ÷ 2) = sq. ft. ÷ 1 de. ridges able r	l x E = ft. ÷ i no. sc	= sq. f no. sc q. ft./t waste	- t. ÷ n ı. ft./l odl.* :	odl.* = no.	= no. of		HIP STY	r each 1.					ABLE S		
oTE: Valleys may HINGLE C IIP ROOF: GABLE ROOF: o allow for sta o Hip roof type	ALCULA Add 0.5 x : A x 1 for e arter strip, e, and 10%	(A + 0) (A + 0)	aterial. (C) ÷ 2) = sq. ft. ÷ 1 de. ridges able r	l x E = ft. ÷ i no. sc	= sq. f no. sc q. ft./t waste	- t. ÷ n ı. ft./l odl.* :	odl.* = no.	= no. of		HIP STY	r each 1.					ABLE S		
OTE: Valleys may HINGLE C. IIP ROOF: GABLE ROOF: O allow for sta	ALCULA Add 0.5 x : A x 1 for e arter strip, e, and 10%	(A + 0) (A + 0)	aterial. (C) ÷ 2) = sq. ft. ÷ 1 de. ridges able r	l x E = ft. ÷ i no. sc	= sq. f no. sc q. ft./t waste	- t. ÷ n ı. ft./l odl.* :	odl.* = no.	= no. of		HIP STY	r each 1.					ABLE S		

Task Title: Use Roofing Estimator_A_A2.3_C3.3

Work Sheet

Task 1: What is the purpose of Valley Treatment?

Answer:

Task 2: How many types of 3-Tab Shingles are listed?

Answer:

Task 3: Locate the Shingle Calculation section on the Estimator. Using the information in the table below, calculate the number of square feet of 1 side of the roof represented in this table.

Hip Roof/house Part A	32 ft
Part B	18 ft
Part C	14 ft
Part D	10 ft
Part E	10 ft

Answer:

Task Title: Use Roofing Estimator_A_A2.3_C3.3

Task 4: Using your calculation in Task 3, calculate how many bundles of 3-Tab shingles will be needed.

Answer:

Task 5: If Citadel shingles cost \$16.97/bundle, calculate the cost of 11 bundles.

Answer:

Answers

Task 1: What is the purpose of Valley Treatment?

Answer: to stop damage due to snow and ice buildup

Task 2: How many types of 3-Tab Shingles are listed?

Answer: 6 types of shingles

Task 3: Locate the Shingle Calculation section on the Estimator. Using the information below, calculate the number of square feet on the roof represented in this table.

Hip Roof/house A	32 ft
В	18 ft
C	14 ft
D	10 ft
E	10 ft

Answer:

 $[(A + C) / 2] \times E = sq.$ feet of roof

 $[(32 + 14) / 2] \times 10 =$

230 sq. ft.

Task 4: Using your calculation in Task 3, calculate how many bundles of shingles will be needed. If necessary, explain your answer.

Answer:

230 sq. ft. / 32.3 sq ft. per bundle = 7.12 bundles. Since bundles are sold intact, the answer is 8 bundles. *** The answer is correct if the participant used a different number of sq. ft, if they used their answer from Task 3 and did the calculation correctly in Task 4.

*** 8 bundles

Task 5: If Citadel shingles cost \$16.97/bundle, calculate the cost of 11 bundles.

Answer:

\$186.67

Performance Descriptors

Levels	Performance Descriptors	Needs Work	Completes task with support from practitioner	Completes task independently
A2.3	Uses layout to locate information			
A2.3	Manages unfamiliar elements to complete tasks			
C3.3	Understands and uses formulas for finding volume			

This task: Was successfully completed		Needs to be tried again	
---------------------------------------	--	-------------------------	--

Learner Comments:

Instructor (print):

Learner (print):